Peroxisome proliferator-activated receptor alpha protects renal tubular cells from gentamicin-induced apoptosis via upregulating Na+/H+ exchanger NHE1.

نویسندگان

  • Cheng-Hsien Chen
  • Tso-Hsiao Chen
  • Mei-Yi Wu
  • Jia-Rung Chen
  • Hwei-Fang Tsai
  • Li-Yu Hong
  • Cai-Mei Zheng
  • I-Jen Chiu
  • Yuh-Feng Lin
  • Yung-Ho Hsu
چکیده

Peroxisome proliferator-activated receptor alpha (PPARα) is a transcription factor which has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na+/H+ exchanger NHE1 expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also increased NHE1 expression in the renal tubules in normal mice, but not in PPARα knockout mice. Chromatin immunoprecipitation assays revealed that two PPARα binding elements were located in the rat NHE1 promoter region. Na+/H+ exchanger activity also increased in the PPARα-overexpressed cells. Flow cytometry showed that the PPARα-overexpressed cells were resistant to apoptosis-induced shrinkage. Cariporide, a selective NHE1 inhibitor, inhibited the antiapoptotic effect of PPARα in the gentamicin-treated cells. The interaction between NHE1 and ezrin/radixin/moesin (ERM) and between ERM and phosphatidylinositol 4,5-bisphosphate in the PPARα-overexpressed cells was more than in the control cells. ERM siRNA transfection inhibited the PPARα-induced antiapoptotic effect. PPARα overexpression also increased the phosphoinositide 3-kinase (PI3K) expression, which is dependent on NHE1 activity. Increased PI3K further increased the phosphorylation of the pro-survival kinase Akt in the PPARα-overexpressed cells. Wortmannin, a PI3K inhibitor, inhibited PPARα-induced Akt activity and the antiapoptotic effect. We conclude that PPARα induces NHE1 expression, and then recruits ERM to promote PI3K/Akt-mediated cell survival in renal tubular cells. The application of PPARα activation reduces the nephrotoxicity of gentamicin and may expand the clinical use of gentamicin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prostacyclin protects renal tubular cells from gentamicin-induced apoptosis via a PPARalpha-dependent pathway.

To study the protective effect of prostacyclin (PGI2) we increased PGI2 production by infected NRK-52E cells with an adenovirus carrying cyclooxygenase-1 and prostacyclin synthase. PGI2 overexpression protected these cells from gentamicin-induced apoptosis by reducing cleaved caspase-3 and caspase-9, cytochrome c, and decreasing generation of reactive oxygen species. Expression of the nuclear r...

متن کامل

Peroxisome proliferator-activated receptor alpha plays a crucial role in L-carnitine anti-apoptosis effect in renal tubular cells.

BACKGROUND L-carnitine is synthesized mainly in the liver and kidneys from lysine and methionine from dietary sources. Many reports have shown that L-carnitine can protect certain cells against the toxicity of several anticancer and toxic agents, although the detailed mechanism is poorly understood. In this study, we investigated the protective effect of L-carnitine and its molecular mechanism ...

متن کامل

Renal tubular epithelial cell apoptosis is associated with caspase cleavage of the NHE1 Na+/H+ exchanger.

Renal tubular epithelial cell (RTC) apoptosis causes tubular atrophy, a hallmark of renal disease progression. Apoptosis is generally characterized by reduced cell volume and cytosolic pH, but epithelial cells are relatively resistant to shrinkage due to regulatory volume increase, which is mediated by Na(+)/H(+) exchanger (NHE) 1. We investigated whether RTC apoptosis requires caspase cleavage...

متن کامل

Regulação da sobrevida celular pelo antiporter NHE1 – bomba eletroneutra Na+/H+ Regulation of cell survival by Na/H exchanger-1

Na/H exchanger-1 (NHE1) is a ubiquitous plasma membrane Na/H exchanger typically associated with maintenance of intracellular volume and pH. In addition to the NHE1 role in electroneutral Na/H transport, in renal tubular epithelial cells in vitro the polybasic, juxtamembrane NHE1 cytosolic tail domain acts as a scaffold, by binding with ezrin/radixin/moesin (ERM) proteins and phosphatidylinosit...

متن کامل

Regulation of cell survival by Na+/H+ exchanger-1.

Na(+)/H(+) exchanger-1 (NHE1) is a ubiquitous plasma membrane Na(+)/H(+) exchanger typically associated with maintenance of intracellular volume and pH. In addition to the NHE1 role in electroneutral Na(+)/H(+) transport, in renal tubular epithelial cells in vitro the polybasic, juxtamembrane NHE1 cytosolic tail domain acts as a scaffold, by binding with ezrin/radixin/moesin (ERM) proteins and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular medicine

دوره   شماره 

صفحات  -

تاریخ انتشار 2015